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SUMMARY 

A new method is presented for the calculation of the wake of a finite flat plate. The method is based upon the recent 
investigations of the boundary layer near the trailing edge, which led to the triple-deck structure. This multi-layered 
structure has now been extended to the "classical" wake, which in fact is the continuation of the lowest two layers of 
the triple-deck. With this new numerical formulation an accuracy of 10-3% can easily be achieved. 

I. Introduction 

From momentum observations it is known that, in boundary layer theory, the drag of a body 
equals the momentum thickness far behind the body (Schlichting [1]). For  a finite flat plate 
of length L, placed in a uniform stream parallel to the plate with velocity U, density p and 
viscosity v, the drag on one side of the plate is given by 

D = 2 a p U 2 L R e  -~  + . . . .  (1) 

where a is the Blasius constant a=0.332057 and R e =  UL/v  is the Reynolds number. In fact 
for a flat plate the momentum thickness must equal D for all x > 0, x--  0 being the trailing edge. 

First attempts to calculate the flow field in the wake were made by Tollmien [2] and Goldstein 
[3, 4]. They set up asymptotic expansions valid for either x--*0 [3] or x ~  ~ [2]. Goldstein [4] 
tried to patch these two expansions. However, a verification of the equality of the drag and 
the momentum thickness could not be made, because the expansion for x-~ c~ contained an 
arbitrary constant which had to be evaluated by imposing this equality. 

The only possibility for verification is to solve the boundary layer equations for all x, starting 
with the correct initial profile. Goldstein's expansion near x = 0, however, possesses a singularity 
in the velocity which makes the boundary layer equation no longer valid near x = 0. Recently 
the correct structure of the flow field near the trailing edge has been determined by Stewartson 
[5] and Messiter [6]. They suggested a triple-deck structure in a region where x =  O(Re-~). 
This triple-deck consists of three layers: (i) a viscous sublayer where y = O ( R e  -~) and the 
boundary layer equation with pressure gradient must be used; (ii) an inviscid main deck where 
y --- O (Re- ~) and the main term in the streamfunction is the Blasius function; (iii) a potential 
upper deck where y = O (Re- ~), which smoothes out the disturbances of the boundary layer. 
The equations governing the flow in the triple-deck have been solved by Veldman and van de 
Vooren [7], Burggraf and Jobe [8] and Melnik [9]. 

From the triple-deck investigations we can obtain a good insight into the structure of the 
initial profile of the wake boundary layer. At first sight the initial profile is given by the Blasius 
solution. Calculations of the wake using this starting profile have already been made by 
Charwat and Schneider [10] and by Vasantha and Narasimha [-11]. They claim to have calcul- 
ated a momentum thickness which is constant in x-direction within 1% and 0.1% respectively. 
A closer examination learns that a better starting profile is obtained when we also take into 
account the existence of the sublayer in the triple-deck. Therefore we split the near wake into 
two regions. One which matches the inviscid main deck and one which matches the sublayer. 
These two regions are the same as Goldstein's outer and inner region [3]. 

In the sublayer of the triple-deck for x > 0 an analogous structure exists. In the triple-deck 
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calculations of Veldman and van de Vooren [7] the sublayer was divided into an upper and 
a lower part, analogous to Goldstein's outer and inner region. It was found that this splitting 
is an accurate way in handling the flow singularities near x = 0. Therefore we will use in this 
paper the method of Veldman and van de Vooren to calculate the wake. This idea of splitting 
the wake was also proposed by Smith [12]. It appears that the accuracy of the calculations can 
easily be improved down to 10-3 %. 

2. Numerical method 

Let (x, y) be a Cartesian coordinate system with origin at the trailing edge of the plate, non- 
dimensionalized by L. The velocity will be nondimensionalized by U and the streamfunction 
~9 by UL. In the boundary layer we introduce a stretching transformation y=Re-~)7  and 

= Re -~ ~. Then the boundary layer equation in the wake is written as 

~ u ~ - ~ u ~  = u.~yy, ~ = u (2a, b) 

with boundary conditions 

37= 0: ~ = up= 0 ; 3 7 ~  : u--,1 exponentially. (3) 

For small x, the solution is given by the Goldstein inner solution which matches the sublayer 
of the triple-deck 

(9 ~ x~ fo (q) (4) 
~ - ~  �9 ,H 2 , t  1 , 2  " w h e r e q = y x  andfosatlsfiesf~; + J o f ~ - J d  =0wl thboundarycondi t ionsfo(0)=fd ' (0)=0 ,  

fd' ( ~ ) =  a, and by the Goldstein outer solution which matches the main deck of the triple-deck 

~ Fo(; )+x+A1F'o( ; )  (5) 

where F o is the Blasius function satisfying ~ " ' •  1 u ~,, - o  ~ - o - o  =0, Fo(0)=F~(0)=0,  F o ( ~ ) =  1 and 
A 1 = 1.288129. 

For  large x the solution is given by 

~ ~ ~ 1 x ~ ~ - A n ~ er f (~)  (6) 

where ~ = yx  - ~ and from momentum considerations we should have A = 2a/n ~. See for instance 
Schlichting [1] or Berger [13]. 

Due to the different behaviour of the far and the near wake we have split the wake into two 
parts" x < 1 and x > 1. In the part x__< 1 we use variables especially suited for the near wake 
structure; in the part x > 1 other variables, adapted to the far wake are used. In y-direction the 
wake has been cut off at some finite value of)7. This is possible because the horizontal velocity u 
approaches its free stream value exponentially. 

The region x___< 1 : The wake is divided into two parts. A lower region where the q-coordinate 
is finite and an upper region where the y-coordinate should be used. In the lower region we set 

= x  ~ ,  u = x  +ft. (7) 

Moreover a transformation in the q-coordinate is used to obtain a better spreading of the 
meshpoints in q-direction. 

q = t + ( a - 1 ) t  3, t 6 [ 0 , 1 ] .  (8) 

Thus the q-region is restricted to q ~ [0, a]. The value of a must be large enough to allow fo 
reach its asymptotic behaviour for large q. The same transformation was used in [7]. 

In the upper region we take 

= . 9 + ~ ,  u = l + f i .  (9) 

In this way ~ is bounded and fi vanishes if ~7~ ~ .  

Journal of Engineering Math., Vol. 9 (1975) 65-70 



A new calculation o f  the wake o f  a f ia t  plate 67 

The appropriate variable in x-direction is x ~. But an additional transformation to obtain 
even more points near x =0  appears preferable. Therefore we take 

= 1  - 1  2 o-E[0,1] .  (10) X ~ ~0- ~- 2~0" , 

The grid points in the upper and lower region should be smoothly connected. Therefore we 
have to make the following transformation in y-direction 

1]. (11) 
The values of y are restricted to [0, a], which implies that a must be large enough to cover the 
whole boundary layer. A value a =  10 appears to be large enough. 

The region x > 1 : In the far wake, equation (6) suggests to set 

= x ~ + ~  * ,  u = l + x - ~ u  *.  (12) 

This region is only connected with the lower region x < 1. In ~-direction we can therefore also 
make use of transformation (8). In x-direction the simplest possible transformation 

x - ~ = l - s ,  s e [ 0 , 1 ]  (13) 

appears to be satisfactory. 
�9 A rough sketch (not~ to scale) of the total grid structure is displayed in Fig. 1. 

/ f f  

. . - - - - 4 - - - - - - - - - - - "  

1 

Figure 1. The grid structure. 
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The equations have been solved by a finite difference method. A grid was used, equidistant 
spaced in the a, p, t and s variables. When in the (r-interval [0, 1] N points were chosen, the 
#- and t-intervals were covered with 4N points each and the s-interval with 1N points. Line 
iteration has been used along lines x = constant, starting at x = 0. As initial profile we use the 
Blasius and Goldstein functions, leading to ~(0, ~)=fo(q) and ~ (0,)7)= F o ()7)-)7. 

Equation (2) was transformed by the transformations (7) through (13). The transformed 
equation (2a) was used as an equation for the transforms of u. It was discretized with a usual 
Crank-Nicholson method, using points at lines x and x - A x .  At the boundary between the 
upper and lower region.in x < 1 we use the upper formulation. Thus a tridiagonal system of 
equations is obtained, in which the only exception is made by the boundary condition u?---0 
at 37=0. This equation was discretized like 3 u ( x , O ) - 4 u ( x ,  k ) + u ( x ,  2k)=0. Actually the 
coordinates (a, t) or (s, t) were used instead of (x,)7). The terms ~? and ~x in equation (2) were 
regarded as coefficients in this u-equation and were calculated from previously found values of 
~. In the first iteration-step at a line x =  x 0, the values of~  were taken equal to those at x = x o - Ax.  
In the following steps they were calculated by an integration of Eqn. (2b) using the newest 
values for u. 

The iterations at a line stopped when the new values of fi, fi or u* did not change more than 
10- v in one iteration step. For  most of the lines 5-9 iterations were needed. Only very close to 
x = 0 a little more werd required. 
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3. Results and conclusions 

Calculations have been performed with four different grids: N =  20, 40, 80 and 160. The com- 
putation time on a CDC 6600 for these grids is 9 sec., �89 min., 2 rain. and 7 min. respectively. 

As a demonstration of the accuracy reached with this new method we present in Table 1 
the values of the momentum thickness 62=S~u(1-u)df and of u*(oo, 0) at s = l  (x=  oo), 

T A B L E  1 

Values for momentum thickness and velocity defect at x = co 

62(co) u*(oo, 0) 

N = 2 0  0.659594 - 0 . 3 7 2 9 0 4  

N = 4 0  0.662952 - 0 . 3 7 4 2 1 9  

N =  80 0.663815 - 0 . 3 7 4 5 6 4  

N =  160 0.664036 - 0 . 3 7 4 6 5 4  

Extrapolated 2(~  40 0.664071 - 0 . 3 7 4 6 5 7  

4 0 -  80 0.664103 - 0.374679 

80-160 0.664110 - 0 . 3 7 4 6 8 4  

Exact  0.664115 - 0 . 3 7 4 6 8 7  

T A B L E  2 

Values for  centerline velocity u (x, 0), displacement thickness 6 l (x) and its derivative d6 l (x)/ dx, obtained with a Richardson 
extrapolation. 

X [I(X, O) (~1 (X) d~  1 (x)/dx 

0 0 1.720788 - so 

1.80879 • 10-  5 0.020277 1.686989 - 6.2227 x 10 z 

1.66375 x 10 -4  0.042484 1.650081 - 1.4111 x 102 

6.41619 • 10 . 4  0.066615 1.610219 - 5.6900 x 10 

1.72800 x 10 . 3  0.092658 1.567624 - 2 . 9 0 1 6  • 10 

3.81470 x 10 -3  0.120587 1.522582 - 1.6804 x 10 

7.41488 ~ 10 3 0.150364 1.475450 - 1.0528 x 10 

i..31861 x 10 2 0.181921 1.426656 - 6 . 9 5 0 8  

2.19520 • 10 . 2  0.215162 1.376698 - 4 . 7 5 8 3  

3.47257 • 10 -  2 0.249952 1.326128 - 3.3413 

5.27344 x 10-  z 0.286106 1.275544 - 2.3885 

7.74450 • 10 -2 0.323385 1.225570 - 1.7285 

1.10592 x 10 -  l 0.361495 1.176821 - 1.2610 

1.54206 x 10-~ 0.400087 1.129882 - 9 . 2 4 4 1  • 10-1 

2.10645 x 10-  l 0.438767 1.085270 - 6.7946 x 10-1 

2.82623 x 10-1 0.477115 1.043409 - 4 . 9 9 9 7  x 10-1 

3.73248 x 10-1  0.514705 1.004608 - 3.6798 x 10 -  i 

4.86051 • 10 -  i 0.551132 0.969053 - 2.7083 x 10-1 

6.25026 x 10-1 0.586037 0.936804 - 1.9935 • 10-  

7.94666 x 10-1 0.619131 0.907813 - 1.4684 x 10-1 

1.00000 0.650202 0.881941 - 1.0813 x 10 - 1 

1.23457 0.677866 0.859961 - 8.1196 x 10-  2 

1.56250 0.707556 0.837432 - 5.8257 x 10 : 

2.04082 0.739298 0.814506 - 3 . 9 5 5 2  x 10 -2 

2.77778 0.773046 0.791382 - 2 . 4 9 9 6  x 10 .2  

4.00000 0.808648 0.768307 - 1.4348 x 10-2  

6.25000 0.845826 0.745570 - 7.1888 x 10-  3 

1 . i i111  x 10 0.884157 0.723483 - 2 . 9 2 3 3  x 10 . 3  

2.50000 x 10 0.923078 0.702365 - 8 . 2 1 4 4  • 10 -4 

1.00000 x 10 z 0.961925 0.682499 - 9 . 5 7 8 6  x 10 -5 

so 1 0.664110 0 
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F i g u r e  2. Cente r l ine  veloci ty  a n d  d i s p l a c e m e n t  th i ckness  in the  w a k e  of  a flat plate .  

0.5 

0 
4 

T A B L E  3 

Values for u(x, 0), 51 (x) and d51/dx before extrapolation. 

x u (x, o) ~ 1 (x) d,~ 1/dx 

N =  80 N =  160 N =  80 N =  160 N = 8 0  N =  160 

0 .0074 0 .150367 0 .150364 1.475466 1.475454 - 1.0523 • 10 - 1.0527 • 10 
0.1106 0 .361472 0 .361489 1.176801 1.176816 - 1 . 2 6 2 1  - 1 . 2 6 1 2  
0 .6250 0.586015 "0.586032 0 .936496 0 .936727 - 1 . 9 9 5 9  x 10 -1  - 1 . 9 9 4 1  / 10 -1  
2.7778 0 .773378 0 .773054 0 .791062 0 .791302 - 2 . 4 9 8 9  • 10 2 - 2 .4994 x 10 - 2  

which were obtained with the four grids. Also values obtained from a Richardson extrapolation 
based on h 2 are given. 

The exact value for 62 is 6 2 = 2a and from Eqn. (6) we derive that u* (o% 0)= -2a/rc  ~. Note 
that the calculations for N = 20 already find the c o r r e c t  6 2 within 0.7 ~ .  The finest grids even 
yield after extrapolation an error in 52 less than 10-3 ~o. For  finite values of x the difference 
between the calculated 62 and its exact value is smaller than at x = oo. 

Results for the centerline velocity u (x, 0) and the displacement thickness 61 (x) = S~ (1 -u)d)7 
are given in Table 2 and in Fig. 2. Also shown in Fig. 2 are the far wake asymptotic expansions 
of these quantities given by 

u(x, O)~ 1 - A x - ~ - � 8 9  -1 and (14) 

61 (x) ~ A~z ~ + A 2 (zt/2x) ~ . (15) 

These expansions can be derived from results given by Berger [13]. 
The second order potential flow outside the wake can be obtained when the vertical velocity 

at the outer edge of the wake, R e - ~ d S t / d x ,  is known. Therefore we present in Table 2 also 
values for df l /dx .  All values in Table 2 have been obtained with a Richardson extrapolation 
from the finest two grids. In order to give an idea of the accuracy of Table 2 we present, for a 
few values of x, the tabulated quantities before extrapolation in Table 3. 

Fig. 3 shows some velocity profiles in the wake, which give an idea of the broadening of 
the wake for increasing values of x. 
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Figure 3. Velocity profiles in the wake of a flat plate. 

F o r  in te res ted  readers  a l is t ing of the c o m p u t e r  p r o g r a m ,  wr i t t en  in  Algo l  60, is avai lable .  
As  c o n c l u s i o n  we can  say tha t  the good  u n d e r s t a n d i n g  of  the b o u n d a r y  layer  s t ruc tu re  n e a r  

the t ra i l ing  edge has  led to an  accu ra t e  f o r m u l a t i o n  for the  ca l cu l a t i on  of the wake  flow field. 
It  is be l ieved that  the bas ic  idea  of  the m e t h o d  can  be used in  all  p r o b l e m s  where  t r ip le-decks  
or  o the r  mul t i - l aye red  s t ruc tures  are present .  
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